XV научная конференция «Человек и космос»

<u>Руководитель:</u> Книжин Сергей Игоревич (ИГУ) (sergeiknizhin@mail.ru / telegram: @sergbooker88)

SDR технология, как приемник спутниковых сигналов

При помощи SDR HackRF One и программного комплекса GNU Radio создадим блоки, позволяющие принимать параметры спутниковых сигналов. Выполним анализ полученных данных. Для учащихся 9–11 классов.

Как околоземная плазма влияет на радиоволны?

Используя пакет моделирования математических уравнений выполним анализ возможных лучевых траекторий радиоволн, распространяющихся в околоземной плазме. За основу будет взят метод геометрической оптики. Для учащихся 9–11 классов.

Руководитель: Чучук Тамара Алексеевна (telegram: @tamarachuchuk)

Дневник солнечных пятен

Проект направлен на изучение активности Солнца и её влияния на Землю. В ходе работы планируется сбор и анализ данных о солнечных пятнах с помощью онлайн-ресурсов и космических обсерваторий, исследование связи между солнечной активностью и геомагнитными бурями, оценка воздействия вспышек на работу техники. Итогом станет создание наглядного отчёта с графиками и выводами о динамике солнечной активности, а также создание демонстрационных материалов, отражающих механизм воздействия и динамику изменения солнечных пятен. Для учащихся 9–11 классов.

Насколько стары звёзды?

Возможно, каждый из вас хоть раз любовался звездным небом и задавался вопросом о том, насколько эти звезды старые. В работе вам предстоит узнать, что такое звезды, как они «живут» и эволюционируют. На практике вы познакомитесь с диаграммой Герцшпрунга—Рассела. Используя эту диаграмму и основные понятия астрономии попробуете самостоятельно определить возраста звездных скоплений. Для учащихся 9–11 классов. Автор темы Екатерина Смотрова.

Насколько греет Солнце?

От Солнца к нам непрерывно приходит энергия в виде тепла и света. Эта энергия играет важную роль при расчёте климатических моделей и изучении атмосферы. В связи с этим, в данной работе предлагается экспериментально (в домашних условиях) измерить мощность излучения, приходящего от Солнца. Для учащихся 8–11 классов. Автор темы Илья Мотык.

Руководитель: Смотрова Екатерина Евгеньевна

(katerina.smotrova@mail.iszf.irk.ru / https://vk.com/katercatya /

telegram: @kater catya)

Методы поиска экзопланет

Необходимо изучить литературу по методам поиска экзопланет, какие параметры можно узнать с помощью предложенных методов, таким образом сравнить их. В качестве практики может быть предложено опробовать применить данные методы на реальных данных (обработка данных возможна с использованием Excel или любого языка программирования). Практическое задание подбирается индивидуально. Для учащихся 7–11 классов.

Облака – предвестники погоды

Предлагается проверить на практике погодные приметы, связанные с облаками. Для этого ученику нужно будет самостоятельно найти погодные приметы, а для проверки предлагается вести дневник наблюдения за облаками и погодой (в течение 1–3 месяцев). Для учащихся 5–8 классов.

Как увидеть потоки?

Предлагаем вам создать своими руками установку для визуализации воздушных/водных потоков. Затем мы с вами изучим и наглядно посмотрим на разные аэрогидродинамические эффекты. Для учащихся 9–11 классов.

Эффект Коанда

В данной работе предлагаем познакомиться с одним из аэродинамических эффектов — эффект Коанда. Изучить теоретические основы, узнать, где он применяется. На практике предлагается провести наглядный опыт по демонстрации этого эффекта. Возможно будут проводиться небольшие расчеты. Для учащихся 7—9 классов.

Эффект Тиндаля

Предлагаем вам ознакомиться с интересным оптическим явлением. Используя лазер и жидкости, вы сможете провести серию экспериментов по выявлению закономерностей в разных дисперсных средах. Для учащихся 6—9 классов.

<u>Руководитель</u>: Мотык Илья Дмитриевич (ilymotyk@gmail.com / *telegram:* @ilymotyk)

Загадочный объект в центре нашей галактики

В центре галактики Млечный Путь звёзды ведут себя необычным образом, и необходимо выяснить что заставляет звёзды двигаться по орбитам с большой скоростью. В данной работе предлагается оценить массу невидимого объекта по близким звёздам в центре галактики, а также предположить что это может быть за объект. Для учащихся 9–11 классов.

Картина светом

Поляризация — интересное свойство света само по себе, но оно становится ещё интереснее, когда благодаря ему можно творить искусство. В данной работе предлагается изучить такое явление как поляризация света, где и как оно возникает, где используется. Предлагается творческое задание: создать полаж, а также самостоятельно изготовить полярископ — прибор, позволяющий увидеть и проанализировать поляризацию. Для учащихся 7—9 классов.

Руководитель: Челпанов Андрей Алексеевич (a.chlpnv@gmail.com)

Вода в ванне закручивается в разные стороны в разных полушариях. Миф или реальность?

Вместе поймём, как разрешить эту загадку, используя простые эксперименты и совсем немного математики. Для учащихся 8–10 классов.

Как защититься от астероидной опасности

Может ли человек защитить планету в случае угрозы столкновения с астероидом? Рассмотрим, какие технические возможности для этого доступны сегодня, и насколько они эффективны в случае такой угрозы. Для учащихся 9–11 классов.

Дифференциальное вращение Солнца

Разберёмся с явлением неравномерного вращения Солнца вокруг своей оси на разных широтах. Для учащихся 10–11 классов.

<u>Руководитель</u>: Никифоров Павел Геннадьевич (Иркутский планетарий, pnikiforov@yandex.ru)

Получение снимка полярного сияния со спутника Дистанционного Зондирования Земли

Мы соберём аппаратный комплекс (антенну, декодер) и прочее, установим и настроим программное обеспечение, получим снимки во время полярного сияния.

Исследование факторов влияющих на высоту полёта гидравлической ракеты

В работе поразбираемся в таких параметрах, как диаметр сопла, соотношение воздуха и жидкости, форма стабилизаторов, положение центра тяжести и центра тяги и пр.

Руководитель: Сыренова Татьяна Евгеньевна (angata@mail.iszf.irk.ru)

Гражданская наука в астрономии

Необходимо изучить историю и роль любительской (наблюдательной) астрономии в науке. Собрать сведения о существующих сообществах любителей астрономии в России. В качестве практического задания собрать снимки среднеширотных сияний наиболее сильных бурь 25 солнечного цикла в регионе проживания, сравнить со снимками, полученными в Геофизической обсерватории ИСЗФ СО РАН. Для учащихся 8–11 классов.

Руководитель: Подлесный Степан Витальевич (stepan@mail.iszf.irk.ru)

Определение облачного покрова по количеству видимых звезд на кадре

В работе будет проведена оценка погодных условий на основе снимков ночного неба. Для учащихся 7–11 классов.

Руководитель: Климушкин Дмитрий Юрьевич (klimush@iszf.irk.ru)

Моделирование радуги в домашних условиях

Простейшая модель капли дождя — заполненная водой сферическая колба. Освещая колбу белым светом и светом различного цвета, требуется убедиться, что выходящий из колбы свет соответствует свойствам радуги. Необходимо будет изучить теорию формирования радуги на основе закона преломления света. Для учащихся 9—11 классов.

Попятные движения планет: теория и наблюдения

Требуется разобраться в причинах попятного движения планет. Практическая часть включает в себя вычисление параметров попятного движения на основе законов Кеплера, моделирование этого явления. Для учащихся 9–11 классов.

Предыстория научной фантастики

Тема включает в себя анализ научно-фантастических произведений ученых и писателей XVII века (Иоганна Кеплера, Фрэнсиса Годвина, Сирано де Бержерака, Афанасия Кирхера и других), их связь с наукой XVII века — возникающей классической механикой. Возможно, для полного раскрытия темы придется прочитать отрывки из этих произведений, в том числе на английском языке. Для учащихся 9–11 классов.

Предсказание затмений древними астрономами

Требуется изучить элементы теории затмений, разобраться с циклами затмений (сарос, 5/6 месяцев), изучить методы, которые использовали для предсказания затмений астрономы древнего Вавилона. Практическая часть включает проверку эффективности этих методов для предсказания затмений в настоящее время. Возможно, придется задействовать источники на английском языке. Для учащихся 9–11 классов.

Вихри в солнечной системе

Необходимо будет рассмотреть вихревые процессы в атмосферах различных планет солнечной системы, вызывающие их причины. Для учащихся 7–8 классов.

Вулканы и гейзеры в солнечной системе

Необходимо будет рассмотреть вулканические процессы (включая гейзеры) на различных планетах солнечной системы и их спутниках, вызывающие их причины. Возможно, придется задействовать источники на английском языке. Практическая часть включает вычисление скорости извержения вулканов на спутнике Юпитера Ио с помощью анализа фотографий, полученных с борта космических аппаратов. Для учащихся 7–8 классов.

Фазы Луны

Требуется разобраться в причинах смены фаз Луны. Практическая часть включает фотографирование шероховатого шарика в различных состояниях освещенности, соответствующих различным лунным фазам, и установление аналогии между видом этого шарика и Луной в различных фазах. Для учащихся 5–7 классов.